P2-Rh1-P1-O3	117.84 (9)	Rh1-P2-07-C54	-108.5 (2)
P2-Rh1-P104	-10.32(10)	O6-P2-O7-C54	27.8 (3)
P2-Rh1-P1-O5	-130.85 (9)	O8-P2-O7-C54	134.1 (2)
O1-Rh1-P1-O3	-57.10(11)	Rh1-P2-08-C68	-121.4(3)
O1-Rh1-P1-O4	174.74 (11)	O6-P2-O8-C68	107.9 (3)
01-Rh1-P1-05	54.21 (11)	O7-P2-O8-C68	2.0 (3)
P1-Rh1-P206	-9.44 (10)	Rh1-01-C1-C2	7.4 (5)
P1-Rh1-P2-07	118.81 (10)	Rh1-01-C1-C4	-172.6 (2)
P1-Rh1-P2-O8	-130.27 (10)	Rh1-O2-C3-C2	7.8 (5)
O2-Rh1-P2-O6	176.23 (11)	Rh1	-174.2 (3)
O2-Rh1-P2-O7	-55.52 (12)	P1-03-C6-C11	123.6 (3)
O2-Rh1-P2-O8	55.40 (11)	P1-O3-C6-C7	-62.1 (3)
P1-Rh1-01-C1	-176.5 (3)	P1	-70.8 (3)
O2-Rh1-O1-C1	-2.5(3)	P1-04-C20-C25	112.4 (3)
P2-Rh1-O2-C3	-179.0 (3)	P1-05-C34-C39	-102.4 (3)
O1-Rh1-O2-C3	-4.6 (3)	P1-05-C34-C35	81.5 (4)
Rh1-P1-O3-C6	-104.0(2)	P2-06-C40-C45	-71.2 (3)
O4-P1-O3-C6	31.2 (2)	P2-06-C40-C41	110.2 (3)
O5-P1-O3-C6	137.8 (2)	P2-07-C54-C59	126.7 (3)
Rh1-P1-O4-C20	-168.32 (17)	P2-07-C54-C55	-59.7 (4)
O3-P1-O4-C20	56.3 (2)	P2-08-C68-C731	80.5 (5)
O5-P1-O4-C20	-44.9 (2)	P2-08-C68-C732	132.8 (4)
Rh1-P1-O5-C34	-127.9(3)	P2-08-C68-C69	-82.6 (5)
O3-P1-O5-C34	-2.7(3)	01-C1-C2-C3	-5.4 (6)
O4-P1-O5-C34	103.0 (3)	C44-C45-C55-C54	-129.3 (3)
Rh1-P2-O6-C40	-167.26 (17)	C40-C45-C55-C54	50.9 (5)
O7-P2-O6-C40	58.3 (2)	C40-C45-C55-C56	-132.1(3)
O8-P2-O6-C40	-43.6 (2)	C44-C45-C55-C56	47.7 (4)
			• •

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry, as well as a molecular packing diagram, have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55972 (97 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB1032]

References

- Billig, E., Abatjoglou, A. G., Bryant, D. R., Murray, R. E. & Maher, J. M. (1988). US Patent 4 717 775 (Union Carbide).
- Boer, J. L. de & Duisenberg, A. J. M. (1984). Acta Cryst. A40, C-410.
- Bonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156-3160.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Cromer, D. T. & Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
- Cromer, D. T. & Mann, J. B. (1968). Acta Cryst. A24, 321-324.
- Enraf-Nonius (1988). CAD-4 Manual, version 5.0. Enraf-Nonius, Scientific Instruments Division, Delft, The Netherlands.
- Hall, S. R. & Stewart, J. M. (1990). Editors. Xtal3.0 Reference Manual. Univs. of Western Australia, Australia, and Maryland, USA.
- Jongsma, T., Challa, G. & van Leeuwen, P. W. N. M. (1991). J. Organomet. Chem. 421, 121-128.
- Jongsma, T., Fossen, M., Challa, G. & van Leeuwen, P. W. N. M. (1992). J. Mol. Catal. Submitted.
- Jongsma, T., Kimkes, P., Challa, G. & van Leeuwen, P. W. N. M. (1992). Polymer, 33, 161-165.
- Leeuwen, P. W. N. M. van & Roobeek, C. F. (1983). J. Organomet. Chem. 258, 343-350.
- Leipoldt, J. G., Lamprecht, G. J. & van Zyl, G. J. (1985). *Inorg. Chim.* Acta, 96, 31-35.
- Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.
- Le Page, Y. (1988). J. Appl. Cryst. 21, 983-984.
- Meetsma, A. (1992). Extended version of the program *PLUTO* (unpublished). Univ. of Groningen, The Netherlands.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- Olthof-Hazekamp, R. (1990). CRYLSQ. In Xtal3.0 Reference Manual, edited by S. R. Hall & J. M. Stewart. Univs. of Western Australia, Australia, and Maryland, USA.
- Polo, A., Real, J., Claver, C., Castillon, S. & Bayon, J. C. (1990). J. Chem. Soc. Chem. Commun. pp. 600-601.

- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
 - Spek, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. Sayre. Oxford: Clarendon Press.
 - Spek, A. L. (1988). J. Appl. Cryst. 21, 578-579.
 - Spek, A. L. (1990). Acta Cryst. A46, C-34.
 - Spek, A. L. (1992). PLATON92. Unpublished.
 - Tokitoh, Y. & Yoshimura, Y. (1987). *Jpn. Kokai Tokyo Koko*. Jpn. Patent 01/29 335, Jpn. Patent Appl. 85/2 486 466 and Jpn. Patent 62/201 881. Tokitoh, Y. & Yoshimura, Y. (1989). Jpn. Patent 64/26 530 (Kuraray).
 - Tolman, C. A. (1977). Chem. Rev. 77, 3, 313-348.
 - Treçiak, A. M. & Ziolkowski, J. J. (1988). J. Mol. Catal. 48, 319-325. Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1993). C49, 1163-1169

Structures of two Cobalt(III) Sepulchrate Complexes*

ALESSIA BACCHI

Istituto di Chimica Generale ed Inorganica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze 78, I-43100 Parma, Italy

FRANCESCO FERRANTI

Dipartimento di Chimica Fisica ed Inorganica, Università degli Studi di Bologna, Viale del Risorgimento 4, 1-40136 Bologna, Italy

GIANCARLO PELIZZI

Istituto di Chimica Generale ed Inorganica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze 78, I-43100 Parma, Italy

(Received 13 July 1992; accepted 20 November 1992)

Abstract

The complex (1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]icosane)cobalt(III) perchlorate thiosulfate, [Co(C₁₂H₃₀-N₈)](ClO₄)(S₂O₃), crystallizes in the hexagonal space group *P*6₃22. Cations and anions occupy specialsite positions with the anions disordered as a result of symmetry requirements. Co(sep)³⁺ (sep = C₁₂H₃₀N₈) adopts the optically active *D*₃ crystallographic geometry. The packing consists of layers of interacting Co(sep)³⁺ and S₂O₃²⁻ ions, intercalated by isolated ClO₄⁻ anions. The second complex, *rac*-(1,3,6,8,10,13,16,19octaazabicyclo[6.6.6]icosane)cobalt trichloride monohydrate, *rac*-Co(C₁₂H₃₀N₈)]Cl₃·H₂O, crystallizes in the

63-07\$06.00 © 1993 International Union of Crystallography

^{*} In honour of Professor Antonio Indelli, who passed away untimely in September 1990.

monoclinic space group $P2_1/a$. There are two independent [Co(sep)]Cl₃·H₂O mojeties present in the asymmetric unit; the two Co(sep)³⁺ cations have essentially identical conformations, although each one interacts differently with its three corresponding Cl⁻ anions. The two water molecules contribute to this differentiation, bridging the [Co(sep)]Cl₃ moieties in one-dimensional polymeric chains. The geometries of the cations in the two complexes are also identical.

Comment

Sepulchrate (1,3,6,8,10,13,16,19-octaazabicyclo[6,6,6]icosane) complexes are characterized by a rigid ligand cage bonded to the central metal atom by six N donor atoms which cannot leave the coordination sphere, even if the metal oxidation state changes, without breaking covalent N-C or C-C bonds. These capsule constraints (Sargeson, 1979) should allow the chemistry of a number of metal compounds in various oxidation states to be studied whilst keeping their constitution and stereochemistry fixed. The interest of our present work is centred on the structural properties of two Co³⁺ complexes, in particular conformational aspects and packing stereochemistry.

In (1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]icosane)cobalt(III) perchlorate thiosulfate (I), intensity statistics suggesting the absence of centres of symmetry and systematic absences 000l with l odd limited the possible space groups to P63 or P6322; a careful check of the equivalences for point groups C_6 and D_6 led us to choose the latter. Patterson interactions revealed the presence of the metal ion on the 32 site at $(\frac{2}{3}, \frac{1}{3}, \frac{3}{4})$, conforming to the potential D_3 geometry of the Co(sep)³⁺ cation (Fig. 1) which also forces N(cap) to lie on the threefold axis at $(\frac{2}{3}, \frac{1}{3}, z)$ with Z = 2. The stoichiometry also requires the occupation of sites with the 32 crystallographic symmetry by the ClO₄⁻ [Cl1 at (0, 0, 0)] and S₂O₃²⁻ [S1 at $(\frac{1}{3}, \frac{2}{3}, \frac{3}{4})$] anions. As the idealized tetrahedral geometry of the anions is not compatible with such a condition, each anion must be disordered over two equivalent positions related by the twofold axes (Figs. 2a,b) with only two independent atoms bonded to the central atom, one on the threefold axis (O1 and S2, respectively, apical), and the other at the general position (x,y,z) (O2 and O3, respectively, equatorial). As a result of symmetry requirements, there are two equivalent apical and six equivalent equatorial atoms. Such disorder hinders satisfactory refinement and is responsible for the rather high final R value . The highest residual peak in the $\Delta \rho$ map (approximately 2 e $Å^{-3}$) is situated in the sepulchrate cage, at 1.67 Å from the metal ion on the threefold axis. This is possibly the result of further unresolved disorder with position exchange between cations and anions which could account also for the of N(cap) to assume the geometry typical of a near- sp^2 hyanomalously high anisotropy of C2. The remaining peaks bridization. The bite angle $[87.1(5)^\circ]$ and trans N(lig)in the $\Delta \rho$ map are lower than 1 e Å⁻³. This is the only case Co-N(lig) angle [176.0(5)°] in the coordination polyhe-

tallographic D_3 geometry, an approximate D_3 configuration being the most common among the four sepulchrate complexes reported in the literature, (Mikami, Konno & Saito, 1979; Creaser et al., 1977; Creaser et al., 1982). C3 crystallographic geometry has also been found for an Ni²⁺ compound (Paik Suh, Shin, Kim & Kim, 1984).

Fig. 1. ORTEP diagram of the cation of (I) with 30% probability thermal ellipsoids. Methylene H atoms have been omitted.

Fig. 2. ORTEP diagrams of the disordered (a) ClO_4^- and (b) $S_2O_3^{2-}$ anions of (I). Thermal ellipsoids drawn at 30% probability level, shading indicates one of the two images (see text).

The final fractional coordinates for (I) are listed in Table 1 and bond distances and angles in Table 2. The C(cap)-N(cap)-C(cap) angle [114.3(7)°] and the variations in the N(cap)—C(cap)—N(lig)—C(en) bond length [1.45(1), 1.51(1), 1.48(2) Å] are in good agreement with data in the literature cited above, confirming the tendency so far in which the sepulchrate molecule adopts the crys- dron are typical for these chelate systems. It has not been

possible to determine unambiguously the absolute configuration of the cation because checks based on R values (R_{inv} = 0.0900) and the Flack parameter [x = 0.5(2); calculated from the final coordinates using SHELXL92 (Sheldrick, 1992)] did not give definitive results. This does not seem to be the result of simple twinning effects as the same results were obtained using data collected for two other different crystals; it is probably caused by the centrosymmetric relations existing among those atoms which occupy 32 and 3 symmetry sites and constitute about 34% of the total electron density inside the unit cell. The tilt angle formed by the C(en) - C(en) direction with the N(cap)-Co-N(cap) threefold crystallographic axis is $5(2)^{\circ}$, indicating that the conformation adopted by the ligand cage is the usual lel_3 . This is the most favourable for energetic stabilization of crystal packing because of the hydrogen bonding involving the N-H groups (see below).

The corresponding (+) Co(sep)Cl₃. H₂O enantiomer of rac-(1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]icosane)cobalt(III) trichloride monohydrate (II) has already been studied (Creaser et al., 1977). Complex (II) is racemic and the asymmetric unit contains two independent molecules (A and B), each comprising a $Co(sep)^{3+}$ cation associated with three Cl⁻ anions (Fig. 3), with two water molecules (O1 and O2) completing the crystal packing. Half-normal probability-plot analyses (Gilli, 1977, following Abrahams & Keve, 1971) of bond angles (Fig. 4a) and all bonding and non-bonding distances between non-H atoms in the range 1.0-9.9 Å (Fig. 4b) show that there are no substantial differences in the molecular geometries of the cations of A and B. Similar analyses comparing these cations with the $Co(sep)^{3+}$ cation of compound (I) gave analogous results (Figs. 4c,d). This proves that in the title complexes the conformation of the cage is unaffected by the anionic environment which is determined by crystal packing, the ideal symmetry 32 of (I) being closely approximated by the pseudo- D_3 geometry of (II). Final fractional coordinates for (II) are given in Table 1 and bond distances and angles in Table 2. Bite angles and

Fig. 3. ORTEP diagram of the [Co(sep)Cl₃]⁴ moiety of (II) with 50% probability thermal ellipsoids. Dotted lines show N—H···Cl hydrogen bonds. Methylene H atoms have been omitted.

Fig. 4. Half-normal probability plots comparing (a) bond angles for cations A and B in (II), (b) interatomic distances for cations A and B in (II), (c) bond angles for cations of (I) and (II) (molecule A) and (d) interatomic distances for cations of (I) and (II) (molecule A). Best regression lines (y = mx + q) and their parameters are also shown.

trans N(lig)—Co—N(lig) angles [86.1(2) and 175.4(2)°, respectively, averaged over the coordination polyhedra of A and B] are similar to those found for the analogous compounds cited. Molecules A and B exhibit the *lel*₃ geometry, invariant with inversion of absolute configuration, with angles [C(en)—C(en)] \land [N(cap)—Co—N(cap)] ranging from 3.3(3) to 5.2(3)°.

As shown in Fig. 5, a two-dimensional network of hydrogen bonds in (I) holds the cations and thiosulfate anions together in alternating staggered layers. As these ions occupy the c [Co(sep)³⁺] and d [S₂O₃²⁻] sites of the $P6_{3}22$ space group, hexagonal close packing is obtained with a minimum distance between the layers $N1 \cdots S2 =$ 3.42(2) Å. The ClO_4^- ions are intercalated between the layers and occupy the a sites whose large dimensions permit the disorder already mentioned (see also Paik Suh, Shin, Kim & Kim, 1984). They interact with the cations through the O1...C2 [3.16(2) Å] and O2...C1 [3.45(3) Å] contacts. Within a layer, each cation binds three thiosulfate anions via -N-H···O···Hⁱ-Nⁱ-hydrogen bonds $[0 \cdots N 3.07(1), 2.95(2) \text{ Å}]$; N and Nⁱ belong to the same cation and are related by rotation around a twofold crystallographic axis of the 32 site occupied by the metal but are not connected by an -N-C-C-Nethylenediaminic chain. Each thiosulfate O atom is involved in these interactions and is disordered as described previously, so that the O atom of the $-N-H \cdots O \cdots H^{i}$ Nⁱ system oscillates between two equivalent positions, related by a twofold crystallographic axis, of the same anion. As the N-H groups of the metal coordination polyhedron are coupled by N-H···O···H-N bridges, it is also possible to define a chirality for the interactions between the Co(sep)³⁺ cations and S₂O₃²⁻ anions; the absolute configuration of these systems is imposed by the *sp*³ geometry of N-H groups which, for a given cation configuration, determines unequivocally the pairs of N atoms for which the N-H directions converge to a potential hydrogen-acceptor atom. It can be shown that the resulting hydrogen-bonding absolute configuration for the present *lel*₃ pseudo-octahedral moiety is the opposite of that of the *M*N₆ parent complex.

Fig. 5. Crystal packing in (I) viewed along [110]. Anions are represented as disordered moieties; H atoms have been omitted.

In (II), the pseudo-threefold axes N(cap)—Co—N(cap) of molecules A and B make an angle of 118° . The interactions between the anions and cations in $[Co(sep)Cl_3]^A$ and $[Co(sep)Cl_3]^B$ have been compared by analysis of the half-normal probability plot described above; this shows that packing contacts among ionic pairs differ significantly in the two independent molecules (Fig. 6). Three anions link pairs of N-H groups in each cation (Fig. 3, Table 3) and in molecule A there are slightly higher angular deviations of the $Co \cdot \cdot Cl$ directions from those of ideal twofold axes. The variation in the N-Cl distances, particularly Cl1 and Cl3, is also higher in molecule A as a result of the Coulombic repulsion Cl1...C9 [$(\frac{3}{2} - x)$, $\frac{1}{2} + y, 2 - z$ 3.281(6) Å] and the contact O2···Cl3 [(x, y, x)] z - 1 3.176(7) Å], which could be interpreted as a very distorted hydrogen bond (see Table 3).

Water molecules interact very weakly with Cl atoms, generating chains of hydrogen bonds $(N-H^{A}\cdots Cl\cdots H-O-H\cdots Cl\cdots H-N^{B})_{n}$ which determine a one-dimensional polymeric connection along the z direction (Fig 7). The same motif is found in the (+) enantiomer mentioned above. The stronger $O(H_{2}O)\cdots Cl^{-}$ hydrogen

Fig. 6. Half-normal probability plot comparing interactions between cation and anions for molecules A and B of (II). Linear regression parameters are given. The solid line refers to the data shown in this figure and the dotted line to the analysis of interatomic distances for cations A and B (Fig. 4b).

bonds in molecule B influence the variation in the average $N \cdots Cl_i$ distances; the smallest value is found for the Cl atom which does not interact with the water molecules (average N—Cl2 distance in B = 3.141 Å) while the greatest value belongs to the Cl atom most involved in water hydrogen bonding (average values of N-Cl1 and N-Cl3 are 3.171 and 3.256 Å, respectively). An analogous trend is found in molecule A in which the variation is smaller because the interactions of the Cl^A atoms with O1 and O2 are weaker (average distances N-Cl2 3.153, N-Cl1 3.157 and N—Cl3 3.216 Å]. For the same reason, the average cation-anion distance relative to the anions involved in hydrogen bonds with water molecules is greater in molecule B (3.214 Å) than in A (3.186 Å). In conclusion, it seems that the main factors distinguishing the geometries of molecules A and B are the angular distortion on Co–Cl directions in A, and the $H_2O \cdots Cl$ hydrogen bonds in B.

Fig. 7. Crystal packing in (II). H₂O···Cl hydrogen bonds are represented as dotted lines. H atoms not belonging to a water molecule have been omitted.

Experimental

Complex (I) Crystal data $[Co(C_{12}H_{30}N_8)]^{3+}.ClO_4^{-}. S_2O_3^{2-}$ $M_r = 556.93$ Hexagonal P6322 a = 8.552 (1) Å c = 17.064 (2) Å V = 1080.8 (3) Å³ Z = 2 $D_x = 1.7113 \text{ Mg m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 3792 measured reflections 644 independent reflections 3618 observed reflections $[I>2\sigma(I)]$ $R_{\rm int} = 0.030$ $\theta_{\rm max} = 25^{\circ}$

Refinement

Complex (II)

Data collection

tometer

Philips PW 1100 diffrac-

Crystal data $[Co(C_{12}H_{30}N_8)]^{3+}.3Cl^-.H_2O$ $M_r = 469.7$ Monoclinic $P2_1/a$ a = 15.143 (3) Å b = 18.277 (4) Å c = 15.191 (3) Å $\beta = 109.55 \ (2)^{\circ}$ $V = 3962 (1) Å^3$ Z = 8 $D_x = 1.5750 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\lambda = 0.71070 \text{ Å}$ Cell parameters from 25 reflections $\theta = 6.6 - 12.7^{\circ}$ $\mu = 1.15 \text{ mm}^{-1}$ T = 293 KHexagonal plates $0.59 \times 0.58 \times 0.21 \text{ mm}$ Yellow

 $h = -10 \rightarrow 10$ $k = -10 \rightarrow 10$ $l = 0 \rightarrow 20$ 2 orientation standard reflections monitored every 200 reflections 2 intensity standard reflections frequency: 160 min intensity variations: none

 $(\Delta/\sigma)_{\rm max} = 0.25$ $\Delta \rho_{\rm max}$ = 1.92 e Å⁻³ $\Delta \rho_{\rm min}$ = -0.96 e Å⁻³

Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallogra-

Mo $K\alpha$ radiation

Cell parameters from 28

4213 observed reflections

 $\lambda = 0.71070 \text{ Å}$

reflections $\theta = 14.4 - 23.4^{\circ}$

 $\mu = 1.29 \text{ mm}^{-1}$

Irregular prisms

Light orange

T = 293 K

 $\omega/2\theta$ scans $R_{\rm int} = 0.032$ Absorption correction: $\theta_{\rm max} = 24^{\circ}$ ψ scan (North, Phillips $h = -16 \rightarrow 16$ $k = 0 \rightarrow 20$ & Matthews, 1968) $l = 0 \rightarrow 16$ $T_{\rm min} = 1.001, T_{\rm max} =$ 1.131 1 intensity standard reflec-6638 measured reflections 6169 independent reflections

Refinement

Refinement on F $\Delta \rho_{\rm max} = 0.72 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.56 \ {\rm e} \ {\rm \AA}^{-3}$ Final R = 0.0405wR = 0.0416Extinction correction: none S = 2.55Atomic scattering factors 4035 reflections from International Tables 703 parameters for X-ray Crystallogra-All H-atom parameters rephy [1974, Vol. IV, Tables fined 2.2A, 2.3.1 (Co, N, C, Cl, Unit weights applied O) and 2.2C (H)] $(\Delta/\sigma)_{\rm max} = 0.12$

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

tion

frequency: 90 min

intensity variation: none

frequency: 160 min	$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$					
intensity variations: none	r		v 7		11	
	(I)	*	y	2	Ueq	
	Co1	-0.33333	-0.66667	-0.25000	0.0142 (6)	
	N1	-0.33333	-0.66667	-0.0750 (7)	0.0438 (40)	
	N2	0.1491 (13)	-0.4732(14)	-0.1833(5)	0.0466 (42)	
$(\sigma)_{\rm max} = 0.25$	C1	-0.1667 (16)	-0.5050 (18)	-0.0956 (6)	0.0508 (56)	
$a_{max} = 1.92 e^{-3}$	C2	-0.1445 (37)	-0.3042 (14)	-0.2068 (6)	0.0978 (83)	
	C11	0.00000	0.00000	0.00000	0.0575 (21)	
$\rho_{\rm min} = -0.96 \ {\rm e} \ {\rm A}^{-3}$	01	0.00000	0.00000	0.0769 (15)	0.0671 (139)	
tinction correction: none	02	0.1219 (30)	-0.0594 (29)	-0.0453 (9)	0.067 (14)	
	S1	0.33333	-0.33333	-0.25000	0.0499 (21)	
comic scattering factors	S2	0.33333	-0.33333	-0.3744 (7)	0.0839 (50)	
from International Tables	03	0.1899 (20)	-0.4920 (20)	-0.2266 (11)	0.0658 (81)	
for X-ray Crystallogra-						
nhy [1074 Vol. IV Tables	(11)					
	Molecu	lle A				
2.2A, 2.3.1 (Co, N, C, Cl,	Col	0.73398 (4)	0.12482 (3)	0.98944 (4)	0.0188 (2)	
O, S) and 2.2C (H)]	NI N2	0.7254 (3)	0.1627 (2)	0.8653 (3)	0.0305 (17)	
	NZ N2	0.6690 (3)	0.0341 (2)	0.9324 (3)	0.0321 (16)	
	N3 NA	0.0129 (3)	0.1701 (3)	0.9806 (3)	0.0340 (16)	
	IN4 NI5	0.8580(3)	0.0860 (3)	0.9941 (3)	0.0347 (17)	
	NG	0.7401(3)	0.0799(2)	1.1105 (3)	0.0341 (16)	
	N7	0.7950(5)	0.2152(2)	1.0552 (5)	0.0358(17)	
o Ko radiation	NR	0.0017 (3)	0.1191(3) 0.1204(3)	0.6222(3)	0.0364 (17)	
	Ci	0.6296 (4)	0.1507 (3)	0.7021 (4)	0.0409(20) 0.0271(22)	
= 0.100 A	C2	0.5861(4)	0.1397(3)	0.7921(4)	0.0371(23)	
ell parameters from 28	C3	0 5332 (4)	0.1586 (4)	0.8899 (4)	0.0430(22)	
reflections	C4	0.7978(4)	0.1269 (3)	0.8345 (4)	0.0471(23) 0.0355(21)	
$= 14.4 - 23.4^{\circ}$	C5	0.6429 (4)	-0.0057(3)	1.0070 (4)	0.0358 (21)	
-1.20 mm^{-1}	C6	0.6302 (4)	0.2493 (3)	1.0037 (4)	0.0407 (24)	
	C7	0.8846 (4)	0.1250 (3)	0.9196 (4)	0.0387 (22)	
= 293 K	C8	0.7211 (4)	0.2536(3)	1.0841 (4)	0.0416 (24)	
egular prisms	C9	0.7264 (4)	0.0008 (3)	1.0952 (4)	0.0400 (22)	
ght orange	C10	0.8868 (4)	0.2041 (4)	1.1330 (4)	0.0494 (24)	
88-	C11	0.9334 (4)	0.0879 (4)	1.0885 (5)	0.0514 (26)	
	C12	0.8390 (4)	0.0930 (4)	1.1889 (4)	0.0476 (21)	
	Cl1	0.7864(1)	0.32316 (8)	0.8806(1)	0.0545 (7)	
	C12	0.8267(1)	-0.06657 (8)	0.8978 (1)	0.0628 (8)	
	Cl3	0.5568 (1)	0.1251 (1)	1.1558 (1)	0.0608 (7)	
12 -h 1 0 1	Molecu	le B				
13 observed reflections	Col	0.23319 (4)	0.13381 (3)	0.49156 (4)	0.0188 (2)	
$[F_o > 3.5\sigma(F_o)]$	N1	0.2270 (3)	0.0258 (2)	0.4879 (3)	0.0255 (14)	

N2 0.1463 (3) 0.1374 (2) 0.5639 (3)	0.0266 (15)	N1-Co1-N6	92.8 (2)	92.9 (2)	
N3 0 3407 (3) 0 1303 (2) 0 6083 (3)	0 0248 (14)	N1-Co1-N5	17560	175 6 (2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0250 (15)		PE 2 (2)	05.0 (2)	
N4 0.1307 (3) 0.1303 (2) 0.3090 (3)	0.0258 (15)	NI-COI-N4	83.3 (2)	03.0(2)	
N5 0.2287 (3) 0.2417 (2) 0.4922 (3)	0.0273 (15)	N1-Co1-N3	91.4 (2)	90.6 (2)	
N6 0.3272 (3) 0.1369 (2) 0.4272 (3)	0.0229 (14)	N1-Co1-N2	90.7 (2)	90.9 (2)	
N7 0 2455 (3) 0 0375 (3) 0 6538 (3)	0.0343 (17)	Co1-N1-C4	109.2 (3)	108.3 (3)	
NP = 0.2303(2) = 0.3284(2) = 0.3270(2)	0.0226 (17)		115 6 (2)	115 0 (2)	
$108 \qquad 0.2202(3) \qquad 0.2284(3) \qquad 0.3279(3)$	0.0330(17)	COI—NI—CI	115.0(5)	113.9(3)	
C1 $0.2423(4) -0.0117(3) 0.5800(4)$	0.0329 (21)	C1-N1-C4	112.4 (4)	112.7 (4)	
C2 0.1605 (4) 0.0793 (3) 0.6374 (4)	0.0388 (23)	Co1-N2-C5	107.0 (3)	107.5 (3)	
C3 0 3293 (4) 0 0815 (3) 0.6847 (4)	0.0331 (21)	Co1-N2-C2	115.2 (3)	115.6 (4)	
$\begin{array}{cccc} C_{3} & 0.5235 (4) & 0.0015 (5) & 0.0017 (4) \\ C_{4} & 0.1273 (4) & 0.0028 (2) & 0.4151 (4) \\ \end{array}$	0.0222 (10)		112.2 (5)	112 4 (4)	
(4 0.13/3(4) 0.0038(3) 0.4131(4)	0.0333 (19)	$C_2 = N_2 = C_3$	113.3 (3)	113.4 (4)	
C5 0.1491 (4) 0.2129 (3) 0.6009 (4)	0.0377 (22)	Co1-N3-C6	107.7 (4)	107.8 (3)	
C6 0.4250 (3) 0.1106 (3) 0.5841 (3)	0.0297 (20)	Co1-N3-C3	116.2 (4)	115.9 (3)	
0.1241(4) 0.0540(3) 0.3342(4)	0.0316 (20)	C3-N3-C6	1120(4)	1120(4)	
$C_1 = 0.1241(4) = 0.0540(5) = 0.0542(4)$	0.0310 (20)		112.0 (4)	112.0 (4)	•
C8 0.4201 (3) 0.1538 (3) 0.4985 (4)	0.0294 (19)	Col-N4-CII	115.6 (4)	115.8 (3)	
C9 0.1499 (4) 0.2645 (3) 0.5253 (4)	0.0384 (23)	Co1-N4-C7	107.0 (4)	107.7 (3)	
C10 0.3043 (4) 0.1855 (3) 0.3428 (4)	0.0326 (20)	C7N4C11	113.4 (5)	113.6 (4)	
C11 0.1357 (4) 0.1864 (3) 0.2085 (4)	0.0347 (22)	Col N5 C12	1160(4)	1156(3)	
	0.0347(22)		110.0 (4)	113.0(3)	
C12 0.2261 (4) 0.2787 (3) 0.4021 (4)	0.0384 (21)	Co1-N5-C9	108.1 (3)	108.2 (3)	
Cl1 $0.3663(1) -0.02676(9) 0.3837(1)$	0.0462 (6)	C9-N5-C12	111.1 (4)	113.3 (4)	
C12 $-0.05614(9)$ $0.13642(9)$ $0.4175(1)$	0.0430 (5)	Co1-N6-C10	115.2 (4)	116.1 (3)	
$C_{12} = 0.4112(1) = 0.20215(8) = 0.6744(1)$	0.0477 (6)	Col N6 C9	106 4 (4)	107.9 (2)	
$C_{13} = 0.4112(1) = 0.29213(8) = 0.0744(1)$	0.0477(0)		100.4 (4)	107.8 (3)	
		C8-N6-C10	112.9 (4)	113.0(4)	
O1 0.5567 (4) 0.4069 (3) 0.8112 (4)	0.0810 (24)	C2-N7-C3	116.9 (5)	113.4 (5)	
02 0.5244 (4) 0.0928 (4) 0.3481 (4)	0.0920 (29)	C1-N7-C3	112.4 (5)	113.8 (5)	
	0.0520(25)	C1 N7 C2	112.1 (5)	112.0 (4)	
		CI = N/ = C2	113.1 (3)	113.9 (4)	
•		C11-N8-C12	112.7 (5)	113.9 (5)	
Table 2 Geometric parameters (Å	o)	C10-N8-C12	114.9 (5)	113.9 (5)	
Table 2. Debineti te purumeters (A		C10 N8 C11	114.0 (5)	112 0 (5)	
(I)			114.9 (3)	113.9(3)	
Col N2 1977 (8) C11 O1	1 21 (2)	NICIN7	113.2 (4)	113.4 (4)	
	1.51(2)	N2-C2-N7	112.9 (5)	113.6 (5)	
NI-CI I.45 (I) CII02	1.57 (2)	N3-C3-N7	112.6 (5)	1130(4)	
N2C1 1.52 (1) S1S2	2.12(1)	NI CA C7	105 3 (4)	106 5 (4)	
N2C2 1.48(2) S1O3	1.36(1)	NI	103.3 (4)	100.5 (4)	
		N2	106.1 (5)	107.7 (5)	
Co1-N2-C2 106.4 (7) N1-C1-N2	112(1)	N3C6C8	106.4 (4)	106.8 (4)	
$C_{01} = N_2 = C_1$ 116.9 (8) $O_1 = C_{11} = O_2$	119/11	N4-C7-C4	106.3 (5)	108 0 (4)	
	107 1 (9)	NG CP CG	106.6 (5)	106 4 (4)	
$C1 = N_2 = C_2$ $I13.2(9)$ $32 = 31 = 03$	107.1 (8)	N0C8C0	100.0 (3)	100.4 (4)	
 A second base of the second s Second second sec second second sec		N5-C9-C5	106.4 (4)	107.1 (5)	
		N6-C10-N8	113.1 (5)	113.2 (4)	
		N6-C10-N8 N4-C11-N8	113.1 (5) 112.8 (5)	113.2 (4) 113.4 (4)	•
		N6-C10-N8 N4-C11-N8	113.1 (5) 112.8 (5)	113.2 (4) 113.4 (4)	•
(II) A B Co1N1 1.972 (5) 1.976 (4)		N6—C10—N8 N4—C11—N8 N5—C12—N8	113.1 (5) 112.8 (5) 112.4 (5)	113.2 (4) 113.4 (4) 113.5 (4)	• .
(II) A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5)		N6—C10—N8 N4—C11—N8 N5—C12—N8	113.1 (5) 112.8 (5) 112.4 (5)	113.2 (4) 113.4 (4) 113.5 (4)	•
(II) A B Co1 $-N1$ 1.972 (5) 1.976 (4) Co1 $-N2$ 1.975 (4) 1.979 (5) Co1 $-N3$ 1.976 (5) 1.967 (3)		N6—C10—N8 N4—C11—N8 N5—C12—N8	113.1 (5) 112.8 (5) 112.4 (5)	113.2 (4) 113.4 (4) 113.5 (4)	• •
(II) A $BCo1-N1 1.972 (5) 1.976 (4)Co1-N2 1.975 (4) 1.979 (5)Co1-N3 1.976 (5) 1.967 (3)Co1 N4 1.995 (5) 1.995 (3)$		N6	113.1 (5) 112.8 (5) 112.4 (5)	113.2 (4) 113.4 (4) 113.5 (4)	1 1 702 -
(II) A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N4 1.986 (5) 1.986 (3)		N6-C10-N8 N4C11N8 N5C12N8 Table 3. <i>Hydro</i>	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista	113.2 (4) 113.4 (4) 113.5 (4) 110.ces (Å) and	d angles (°) in
(II) A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4)		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. <i>Hydro</i>	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista	113.2 (4) 113.4 (4) 113.5 (4) unces (Å) and toms and N	d angles (°) in
(II) A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.980 (5)		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. <i>Hydro</i> <i>compound</i> (II)	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a	113.2 (4) 113.4 (4) 113.5 (4) 113.5 (4) 113.5 (A) and toms and N-	d angles (°) in —H groups or
(II) A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.980 (5) N1-C1 1.505 (6) 1.506 (7)		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro compound (II)	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule	113.2 (4) 113.4 (4) 113.5 (4) ances (Å) and toms and N- s O1 and O2	d angles (°) in —H groups or
(II) A $BCo1-N1 1.972 (5) 1.976 (4)Co1-N2 1.975 (4) 1.979 (5)Co1-N3 1.976 (5) 1.967 (3)Co1-N4 1.986 (5) 1.986 (3)Co1-N5 1.965 (5) 1.973 (4)Co1-N6 1.973 (4) 1.980 (5)N1-C1 1.505 (6) 1.506 (7)N1-C4 1.491 (9) 1.401 (6)$		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro compound (II)	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule	113.2 (4) 113.4 (4) 113.5 (4) 113.5 (4) 11000 and N- toms and N- s O1 and O2	d angles (°) in —H groups or
(II) A $BCo1-N1 1.972 (5) 1.976 (4)Co1-N2 1.975 (4) 1.979 (5)Co1-N3 1.976 (5) 1.967 (3)Co1-N4 1.986 (5) 1.986 (3)Co1-N5 1.965 (5) 1.973 (4)Co1-N6 1.973 (4) 1.980 (5)N1-C1 1.505 (6) 1.506 (7)N1-C4 1.481 (8) 1.491 (6)$		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. <i>Hydro</i> <i>compound</i> (II)	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N···Cl	113.2 (4) 113.4 (4) 113.5 (4) 113.5 (4) 113.5 (4) 113.5 (4) 113.5 (4) 113.5 (4) 113.5 (4) 113.5 (4) 113.5 (4) 113.4 (4) 113.4 (4) 113.4 (4) 113.5 (4)	d angles (°) in —H groups or N—H···Cl
A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.980 (5) N1-C1 1.505 (6) 1.506 (7) N1-C4 1.481 (8) 1.491 (6) N2-C2 1.533 (6) 1.503 (7)		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro compound (II)	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N···Cl	113.2 (4) 113.4 (4) 113.5 (4) ances (Å) and toms and N- s O1 and O2 H···Cl	d angles (°) in —H groups or N—H…Cl
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro compound (II) V Molecule A N1C11	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule. N···Cl 3.059 (6)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H…Cl 170 (6)
A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.980 (5) N1-C1 1.505 (6) 1.506 (7) N1-C4 1.481 (8) 1.491 (6) N2-C2 1.533 (6) 1.503 (7) N2-C5 1.505 (8) 1.485 (7) N3-C3 1.512 (6) 1.519 (7)	•	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. <i>Hydro</i> <i>compound</i> (II) Wolecule A N1Cl1	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N···Cl 3.059 (6) 3.255 (7)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H···Cl 170 (6) 142 (6)
A B Co1N1 1.972 (5) 1.976 (4) Co1N2 1.975 (4) 1.979 (5) Co1N3 1.976 (5) 1.967 (3) Co1N4 1.986 (5) 1.986 (3) Co1N5 1.965 (5) 1.973 (4) Co1N6 1.973 (4) 1.980 (5) N1C1 1.505 (6) 1.506 (7) N1C2 1.533 (6) 1.503 (7) N2C2 1.533 (6) 1.503 (7) N3C5 1.512 (6) 1.546 (7)		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. <i>Hydro</i> , <i>compound</i> (II) W Molecule A N1Cl1 N6Cl1 N6Cl1	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule: N···Cl 3.059 (6) 3.255 (7) 3.255 (7)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H…Cl 170 (6) 142 (6)
(II) A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.980 (5) N1-C1 1.505 (6) 1.506 (7) N1-C4 1.481 (8) 1.491 (6) N2-C2 1.533 (6) 1.503 (7) N2-C5 1.505 (8) 1.485 (7) N3-C3 1.512 (6) 1.519 (7) N3-C6 1.492 (7) 1.486 (7)		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. <i>Hydro</i> <i>compound</i> (II) <i>v</i> Molecule <i>A</i> N1···Cl1 N6··Cl1 N2···Cl2	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule. N···Cl 3.059 (6) 3.255 (7) 3.194 (6)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H…Cl 170 (6) 142 (6) 169 (5)
A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.980 (5) N1-C1 1.505 (6) 1.506 (7) N1-C4 1.481 (8) 1.491 (6) N2-C2 1.533 (6) 1.503 (7) N2-C5 1.505 (8) 1.485 (7) N3-C3 1.512 (6) 1.519 (7) N4-C7 1.502 (8) 1.483 (7)		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. <i>Hydro</i> <i>compound</i> (II) W Molecule A N1Cl1 N6Cl1 N2Cl2 N4Cl2	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N····Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H···Cl 170 (6) 142 (6) 169 (5) 160 (5)
A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.980 (5) N1-C1 1.505 (6) 1.506 (7) N1-C2 1.533 (6) 1.503 (7) N2-C2 1.533 (6) 1.503 (7) N3-C3 1.512 (6) 1.519 (7) N3-C6 1.492 (7) 1.483 (7) N4-C7 1.502 (8) 1.483 (7) N4-C11 1.505 (7) 1.503 (7)		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) W Molecule A N1Cl1 N6Cl1 N6Cl1 N5Cl2 N4Cl2 N3Cl3	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N····Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6)
A B Co1N1 1.972 (5) 1.976 (4) Co1N2 1.975 (4) 1.979 (5) Co1N3 1.976 (5) 1.967 (3) Co1N4 1.986 (5) 1.986 (3) Co1N5 1.965 (5) 1.973 (4) Co1N6 1.973 (4) 1.980 (5) N1C1 1.505 (6) 1.506 (7) N1C4 1.481 (8) 1.491 (6) N2C5 1.505 (8) 1.485 (7) N3C3 1.512 (6) 1.519 (7) N3C6 1.492 (7) 1.486 (7) N4C7 1.502 (8) 1.483 (7) N4C7 1.505 (7) 1.503 (7) N5C9 1.478 (7) 1.501 (8)		N6C10N8 N4C11N8 N5C12N8 Table 3. Hydro compound (II) V Molecule A N1Cl1 N6Cl1 N2Cl2 N4Cl2 N3Cl3 N5Cl3	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule. N···Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—HCl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 153 (7)
A B Co1N1 1.972 (5) 1.976 (4) Co1N2 1.975 (4) 1.979 (5) Co1N3 1.976 (5) 1.967 (3) Co1N4 1.986 (5) 1.986 (3) Co1N5 1.965 (5) 1.973 (4) Co1N6 1.973 (4) 1.980 (5) N1C1 1.505 (6) 1.506 (7) N2C2 1.533 (6) 1.503 (7) N3C3 1.512 (6) 1.519 (7) N3C6 1.492 (7) 1.486 (7) N4C7 1.502 (8) 1.483 (7) N4C11 1.505 (7) 1.503 (7) N5C9 1.478 (7) 1.501 (8)	• • • •	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. <i>Hydro</i> , <i>compound</i> (II) W Molecule A N1Cl1 N6Cl1 N2Cl2 N4Cl2 N3Cl3 N5Cl3	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N···Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H⋯Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7)
A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.980 (5) N1-C1 1.505 (6) 1.506 (7) N1-C2 1.533 (6) 1.503 (7) N2-C2 1.533 (6) 1.503 (7) N3-C3 1.512 (6) 1.519 (7) N3-C6 1.492 (7) 1.485 (7) N4-C7 1.502 (8) 1.483 (7) N4-C11 1.505 (7) 1.503 (7) N5-C9 1.478 (7) 1.501 (8) N5-C12 1.528 (6) 1.516 (8)	 	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) W Molecule A N1Cl1 N6Cl1 N5Cl2 N4Cl2 N3Cl3	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N····Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7)
(II) A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.980 (5) N1-C1 1.505 (6) 1.506 (7) N1-C4 1.481 (8) 1.491 (6) N2-C2 1.533 (6) 1.503 (7) N2-C5 1.505 (8) 1.485 (7) N3-C6 1.492 (7) 1.486 (7) N4-C7 1.502 (8) 1.483 (7) N4-C11 1.505 (7) 1.503 (7) N4-C11 1.505 (7) 1.503 (7) N5-C9 1.478 (7) 1.501 (8) N5-C12 1.528 (6) 1.516 (8) N6-C8 1.504 (9) 1.492 (5)	• • • •	N6C10N8 N4C11N8 N5C12N8 Table 3. Hydro compound (II) V Molecule A N1Cl1 N2Cl2 N4Cl2 N3Cl3 N5Cl3 Molecule B	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N···Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—HCl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7)
A B Co1N1 1.972 (5) 1.976 (4) Co1N2 1.975 (4) 1.979 (5) Co1N3 1.976 (5) 1.967 (3) Co1N4 1.986 (5) 1.986 (3) Co1N5 1.965 (5) 1.973 (4) Co1N6 1.973 (4) 1.980 (5) N1C1 1.505 (6) 1.506 (7) N2C2 1.533 (6) 1.503 (7) N2C5 1.505 (8) 1.485 (7) N3-C6 1.492 (7) 1.486 (7) N4C7 1.502 (8) 1.483 (7) N4C11 1.505 (7) 1.503 (7) N5C9 1.478 (7) 1.501 (8) N5C12 1.528 (6) 1.516 (8) N6C10 1.535 (7) 1.502 (7)	• • • •	N6C10N8 N4C11N8 N5C12N8 Table 3. Hydro compound (II) W Molecule A N1Cl1 N6Cl1 N2Cl2 N3Cl3 N5Cl3 Molecule B N1Cl1	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N···Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—HCl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5)
A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.980 (5) N1-C1 1.505 (6) 1.506 (7) N1-C2 1.533 (6) 1.503 (7) N2-C2 1.533 (6) 1.503 (7) N3-C3 1.512 (6) 1.519 (7) N3-C6 1.492 (7) 1.486 (7) N4-C7 1.502 (8) 1.483 (7) N4-C11 1.505 (7) 1.503 (7) N5-C9 1.478 (7) 1.501 (8) N5-C12 1.528 (6) 1.516 (8) N6-C8 1.504 (9) 1.492 (5) N6-C10 1.535 (7) 1.502 (7)	• • •	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) W Molecule A N1Cl1 N6Cl1 N2Cl2 N3Cl3 N5Cl3 Molecule B N1Cl1 N6Cl1	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule: N····Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.180 (6) 3.162 (6)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H ···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5)
(II) A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.980 (5) N1-C1 1.505 (6) 1.506 (7) N1-C4 1.481 (8) 1.491 (6) N2-C2 1.533 (6) 1.503 (7) N2-C5 1.505 (8) 1.485 (7) N3-C6 1.492 (7) 1.486 (7) N4-C7 1.502 (8) 1.483 (7) N4-C1 1.505 (7) 1.503 (7) N5-C9 1.478 (7) 1.501 (8) N5-C12 1.528 (6) 1.516 (8) N6-C10 1.535 (7) 1.502 (7) N7-C1 1.460 (8) 1.492 (5) N6-C10 1.535 (7) 1.502 (7)	· ·	N6C10N8 N4C11N8 N5C12N8 Table 3. Hydro, compound (II) V Molecule A N1···Cl1 N6···Cl1 N5···Cl3 Molecule B N1···Cl1 N6···Cl1 N6···Cl1 N6···Cl1 N6···Cl1 N6···Cl1	113.1 (5) 112.8 (5) 112.4 (5) 112.4 (5) $gen-bond \ distance involving \ Cl \ avater molecule N···Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.180 (6) 3.162 (6) 3.162 (6)$	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H ···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 167 (5) 167 (5) 167 (5)
A B Co1N1 1.972 (5) 1.976 (4) Co1N2 1.975 (4) 1.979 (5) Co1N3 1.976 (5) 1.967 (3) Co1N4 1.986 (5) 1.986 (3) Co1N5 1.965 (5) 1.973 (4) Co1N6 1.973 (4) 1.980 (5) N1C1 1.505 (6) 1.506 (7) N1C2 1.533 (6) 1.503 (7) N2C5 1.505 (8) 1.485 (7) N3-C6 1.492 (7) 1.486 (7) N4C7 1.502 (8) 1.483 (7) N4C7 1.502 (8) 1.483 (7) N4C11 1.505 (7) 1.503 (7) N5-C9 1.478 (7) 1.501 (8) N5C12 1.528 (6) 1.516 (8) N6C10 1.535 (7) 1.502 (7) N7C1 1.460 (8) 1.425 (7) N7C2 1.415 (8) 1.444 (7)	· ·	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) W Molecule A N1Cl1 N6Cl1 N5Cl3 Molecule B N1Cl1 N5Cl3 Molecule B N1Cl1 N6Cl1 N6Cl1 N6Cl1 N2Cl2	$\begin{array}{c} 113.1 (5) \\ 112.8 (5) \\ 112.4 (5) \\ \end{array}$ $gen-bond \ distation involving \ Cl \ a$ $vater \ molecule: \\ N \cdots Cl \\ 3.059 (6) \\ 3.255 (7) \\ 3.194 (6) \\ 3.111 (6) \\ 3.160 (6) \\ 3.271 (6) \\ \end{array}$ $\begin{array}{c} 3.180 (6) \\ 3.162 (6) \\ 3.127 (6) \\ \end{array}$	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H ···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 172 (5)
A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.986 (5) N1-C1 1.505 (6) 1.506 (7) N1-C4 1.481 (8) 1.491 (6) N2-C2 1.533 (6) 1.503 (7) N2-C5 1.505 (8) 1.485 (7) N3-C6 1.492 (7) 1.486 (7) N4-C7 1.502 (8) 1.483 (7) N4-C11 1.505 (7) 1.501 (8) N5-C12 1.528 (6) 1.516 (8) N6-C10 1.535 (7) 1.502 (7) N7-C1 1.460 (8) 1.425 (7) N7-C2 1.415 (8) 1.444 (7) N7-C2 1.435 (9) 1.441 (7)		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro compound (II) V Molecule A N1···Cl1 N5···Cl2 N4···Cl2 N3···Cl3 Molecule B N1···Cl1 N5···Cl1 N5···Cl1 N2···Cl2 N4···Cl2 N4···Cl2	$\begin{array}{c} 113.1 (5) \\ 112.8 (5) \\ 112.4 (5) \\ \end{array}$ $gen-bond \ distal involving \ Cl \ a vater \ molecule \\ N\cdot\cdot\cdot Cl \\ 3.059 (6) \\ 3.255 (7) \\ 3.194 (6) \\ 3.111 (6) \\ 3.160 (6) \\ 3.271 (6) \\ \end{array}$ $\begin{array}{c} 3.180 (6) \\ 3.162 (6) \\ 3.127 (6) \\ 3.155 (7) \end{array}$	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H ···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 173 (5)
A B $Col-N1$ 1.972 (5) 1.976 (4) $Col-N2$ 1.975 (4) 1.979 (5) $Col-N3$ 1.976 (5) 1.967 (3) $Col-N4$ 1.986 (5) 1.986 (3) $Col-N5$ 1.965 (5) 1.973 (4) $Col-N6$ 1.973 (4) 1.980 (5) $N1-C1$ 1.505 (6) 1.506 (7) $N1-C4$ 1.481 (8) 1.491 (6) $N2-C2$ 1.533 (6) 1.503 (7) $N2-C5$ 1.505 (8) 1.485 (7) $N3-C6$ 1.492 (7) 1.486 (7) $N4-C7$ 1.502 (8) 1.483 (7) $N5-C9$ 1.478 (7) 1.501 (8) $N5-C12$ 1.528 (6) 1.516 (8) $N6-C8$ 1.504 (9) 1.492 (5) $N6-C10$ 1.535 (7) 1.502 (7) $N7-C1$ 1.460 (8) 1.425 (7) $N7-C2$ 1.415 (8) 1.441 (7) $N7-C2$ 1.436 (9) 1.442 (7) $N8-C10$ 1.430 (9) 1.448 (7)	· · · · · · · · · · · · · · · · · · ·	N6C10N8 N4C11N8 N5C12N8 Table 3. Hydro, compound (II) V Molecule A N1···Cl1 N6···Cl1 N5···Cl3 Molecule B N1···Cl1 N6···Cl1	113.1 (5) 112.8 (5) 112.4 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N····Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.180 (6) 3.162 (6) 3.155 (7) 3.191 (7)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H ···Cl 170 (6) 142 (6) 169 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 173 (5) 157 (5)
A B Co1N1 1.972 (5) 1.976 (4) Co1N2 1.975 (4) 1.979 (5) Co1N3 1.976 (5) 1.967 (3) Co1N4 1.986 (5) 1.986 (3) Co1N5 1.965 (5) 1.973 (4) Co1N6 1.973 (4) 1.980 (5) N1C1 1.505 (6) 1.506 (7) N1C2 1.533 (6) 1.503 (7) N2C2 1.533 (6) 1.503 (7) N2C5 1.505 (8) 1.485 (7) N3C6 1.492 (7) 1.486 (7) N4C7 1.502 (8) 1.483 (7) N4C11 1.505 (7) 1.503 (7) N5C9 1.478 (7) 1.501 (8) N5C12 1.528 (6) 1.516 (8) N6C8 1.504 (9) 1.492 (5) N6C10 1.535 (7) 1.502 (7) N7C2 1.415 (8) 1.444 (7) N7C3 1.436 (9) 1.442 (7) N8C10 1.435 (9) 1.4429 (7)	· · · · · · · · · · · · · · · · · · ·	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) W Molecule A N1Cl1 N6Cl1 N5Cl3 Molecule B N1Cl1 N5Cl3 Molecule B N1Cl1 N6Cl1 N5Cl3 Molecule Cl1 N5Cl3 N5Cl3 N5Cl3 N5Cl3	113.1 (5) 112.8 (5) 112.4 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule: N···Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.180 (6) 3.162 (6) 3.155 (7) 3.191 (7) 3.321 (7)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 173 (5) 157 (5) 172 (5)
A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.986 (5) N1-C1 1.505 (6) 1.506 (7) N1-C2 1.533 (6) 1.503 (7) N2-C2 1.533 (6) 1.503 (7) N2-C5 1.505 (8) 1.485 (7) N3-C6 1.492 (7) 1.486 (7) N4-C11 1.505 (7) 1.503 (7) N5-C5 1.502 (8) 1.483 (7) N5-C5 1.502 (8) 1.483 (7) N4-C11 1.505 (7) 1.503 (7) N5-C12 1.528 (6) 1.516 (8) N6-C10 1.535 (7) 1.502 (7) N7-C1 1.460 (8) 1.425 (7) N7-C2 1.415 (8) 1.444 (7) N7-C3 1.436 (9) 1.441 (7) N8-C11 1.452 (· · · · · · · · · · · · · · · · · · ·	N6C10N8 N4C11N8 N5C12N8 Table 3. Hydro, compound (II) V Molecule A N1···Cl1 N5···Cl2 N4···Cl2 N3···Cl3 Molecule B N1···Cl1 N5···Cl3 Molecule B N1···Cl1 N5···Cl3 N5···Cl3 N5···Cl3 N5···Cl3 N5···Cl3 N5···Cl3	113.1 (5) 112.8 (5) 112.4 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule $N \cdots Cl$ 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.180 (6) 3.162 (6) 3.127 (6) 3.155 (7) 3.191 (7) 3.321 (7)	113.2 (4) 113.4 (4) 113.5 (4)	d angles (°) in →H groups or N→H···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 173 (5) 157 (5) 172 (5)
A B $Col - N1$ 1.972 (5) 1.976 (4) $Col - N2$ 1.975 (4) 1.979 (5) $Col - N3$ 1.976 (5) 1.967 (3) $Col - N4$ 1.986 (5) 1.986 (3) $Col - N5$ 1.965 (5) 1.973 (4) $Col - N6$ 1.973 (4) 1.980 (5) $N1 - C1$ 1.505 (6) 1.506 (7) $N1 - C1$ 1.505 (6) 1.506 (7) $N2 - C2$ 1.533 (6) 1.503 (7) $N2 - C5$ 1.505 (8) 1.485 (7) $N3 - C3$ 1.512 (6) 1.519 (7) $N4 - C7$ 1.502 (8) 1.483 (7) $N4 - C7$ 1.502 (8) 1.483 (7) $N5 - C9$ 1.478 (7) 1.501 (8) $N5 - C12$ 1.532 (6) 1.516 (8) $N6 - C10$ 1.535 (7) 1.502 (7) $N7 - C1$ 1.460 (8) 1.425 (7) $N7 - C2$ 1.415 (8) 1.444 (7) $N7 - C3$ 1.436 (9) 1.444 (7) $N8 - C10$ 1.491 (9) 1.448 (7) $N8 - C10$ 1.432 (9) 1.429 (7) $N8 - C11$ 1.452 (9) 1.429 (7) $N8 - C12$ 1.430 (9) 1.434 (8) $C4 - C7$ 1.450 (9) 1.432 (9)	· · ·	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) Molecule A N1Cl1 N6Cl1 N2Cl2 N3Cl3 N5Cl3 Molecule B N1Cl1 N6Cl1 N2Cl2 N4Cl2 N3Cl3 N5Cl3 N5Cl3 N5Cl3	113.1 (5) 112.8 (5) 112.4 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N····Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.180 (6) 3.162 (6) 3.127 (6) 3.155 (7) 3.191 (7) 3.321 (7)	113.2 (4) 113.4 (4) 113.5 (4)	d angles (°) in —H groups or N—H···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 173 (5) 157 (5) 172 (5)
A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.980 (5) N1-C1 1.505 (6) 1.506 (7) N1-C2 1.533 (6) 1.503 (7) N2-C2 1.533 (6) 1.503 (7) N2-C5 1.505 (8) 1.485 (7) N3-C6 1.492 (7) 1.486 (7) N4-C7 1.502 (8) 1.483 (7) N5-C9 1.478 (7) 1.501 (8) N5-C12 1.528 (6) 1.516 (8) N6-C8 1.504 (9) 1.492 (5) N6-C10 1.535 (7) 1.502 (7) N7-C2 1.415 (8) 1.444 (7) N7-C2 1.436 (9) 1.441 (7) N8-C10 1.401 (9) 1.448 (7) N8-C11 1.452 (9) 1.429 (7) N8-C11 1.452 (• • •	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro compound (II) V Molecule A N1···Cl1 N5···Cl2 N4···Cl2 N3···Cl3 Molecule B N1···Cl1 N5···Cl3 Molecule B N1···Cl1 N5···Cl3 N5···Cl3 N5···Cl3 N5···Cl3	113.1 (5) 112.8 (5) 112.4 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule: $N \cdots Cl$ 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.162 (6) 3.155 (7) 3.191 (7) 3.321 (7)	113.2 (4) 113.4 (4) 113.5 (4)	d angles (°) in —H groups or N—H ···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 173 (5) 172 (5)
A B $Col-N1$ 1.972 (5) 1.976 (4) $Col-N2$ 1.975 (4) 1.979 (5) $Col-N3$ 1.976 (5) 1.967 (3) $Col-N4$ 1.986 (5) 1.986 (3) $Col-N5$ 1.965 (5) 1.973 (4) $Col-N6$ 1.973 (4) 1.980 (5) $N1-C1$ 1.505 (6) 1.506 (7) $N1-C4$ 1.481 (8) 1.491 (6) $N2-C2$ 1.533 (6) 1.503 (7) $N2-C5$ 1.505 (8) 1.485 (7) $N3-C6$ 1.492 (7) 1.486 (7) $N4-C7$ 1.502 (8) 1.483 (7) $N5-C9$ 1.478 (7) 1.501 (8) $N5-C12$ 1.528 (6) 1.516 (8) $N6-C10$ 1.535 (7) 1.502 (7) $N7-C1$ 1.460 (8) 1.425 (7) $N7-C2$ 1.415 (8) 1.444 (7) $N7-C2$ 1.415 (8) 1.444 (7) $N8-C10$ 1.401 (9) 1.448 (7) $N8-C11$ 1.452 (9) 1.429 (7) $N8-C12$ 1.505 (7) 1.492 (8) $C4-C7$ 1.508 (7) 1.489 (9)	· · · · · · · · · · · · · · · · · · ·	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) V Molecule A N1···Cl1 N6···Cl1 N2···Cl2 N4···Cl2 N3···Cl3 Molecule B N1···Cl1 N6···Cl1 N5···Cl3 Molecule B N1···Cl1 N6···Cl1 N5···Cl3 N5···Cl3 N5···Cl3	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N····Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.180 (6) 3.155 (7) 3.191 (7) 3.321 (7) O···Cl	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 123.2 (8) \\ 2.23 (6) \\ 2.32 (8) \\ 2.23 (6) \\ 1.99 (7) \\ 2.30 (10) \\ 2.39 (6) \\ 2.34 (5) \\ 2.260 (5) \\ 2.42 (6) \\ 2.36 (6) \\ 2.64 (4) \\ 11 Cl \\ \end{array}$	d angles (°) in —H groups or N—H ···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 173 (5) 157 (5) 172 (5) 0—H···Cl
A B $Col-N1$ 1.972 (5) 1.976 (4) $Col-N2$ 1.975 (4) 1.979 (5) $Col-N3$ 1.976 (5) 1.967 (3) $Col-N4$ 1.986 (5) 1.986 (3) $Col-N5$ 1.965 (5) 1.973 (4) $Col-N6$ 1.973 (4) 1.980 (5) $N1-C1$ 1.505 (6) 1.506 (7) $N2-C2$ 1.533 (6) 1.503 (7) $N2-C5$ 1.505 (8) 1.485 (7) $N3-C3$ 1.512 (6) 1.506 (7) $N4-C7$ 1.502 (8) 1.483 (7) $N4-C7$ 1.502 (8) 1.483 (7) $N5-C9$ 1.478 (7) 1.501 (8) $N5-C12$ 1.528 (6) 1.516 (8) $N6-C10$ 1.535 (7) 1.502 (7) $N7-C2$ 1.415 (8) 1.444 (7) $N8-C10$ 1.436 (9) 1.442 (7) $N8-C11$ 1.452 (9) 1.429 (7) $N8-C12$ 1.450 (9) 1.434 (8) $C4-C7$ 1.508 (7) 1.489 (9) $C5-C9$ 1.506 (7) 1.489 (9) $C6-C8$ 1.506 (7) 1.502 (8)	· · · · · · · · · · · · · · · · · · ·	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) Molecule A N1Cl1 N6Cl1 N5Cl3 Molecule B N1Cl1 N5Cl3 Molecule B N1Cl1 N5Cl3 N5Cl3 N5Cl3 N5Cl3 N5Cl3 N5Cl3	$\begin{array}{c} 113.1 (5) \\ 112.8 (5) \\ 112.4 (5) \\ \end{array}$ $gen-bond \ distation involving \ Cl \ a$ $vater \ molecule: \\ N \cdots Cl \\ 3.059 (6) \\ 3.255 (7) \\ 3.194 (6) \\ 3.111 (6) \\ 3.160 (6) \\ 3.271 (6) \\ \end{array}$ $\begin{array}{c} 3.180 (6) \\ 3.162 (6) \\ 3.127 (6) \\ 3.155 (7) \\ 3.191 (7) \\ 3.321 (7) \\ O \cdots Cl \end{array}$	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 172 (5) 172 (5) 0—H···Cl
A B $Co1-N1$ 1.972 (5) 1.976 (4) $Co1-N2$ 1.975 (4) 1.979 (5) $Co1-N3$ 1.976 (5) 1.967 (3) $Co1-N4$ 1.986 (5) 1.986 (3) $Co1-N5$ 1.965 (5) 1.973 (4) $Co1-N6$ 1.973 (4) 1.980 (5) $N1-C1$ 1.505 (6) 1.506 (7) $N1-C4$ 1.481 (8) 1.491 (6) $N2-C2$ 1.533 (6) 1.503 (7) $N2-C5$ 1.505 (8) 1.485 (7) $N3-C6$ 1.492 (7) 1.486 (7) $N4-C7$ 1.502 (8) 1.483 (7) $N4-C11$ 1.505 (7) 1.503 (7) $N5-C5$ 1.512 (6) 1.516 (8) $N5-C12$ 1.528 (6) 1.516 (8) $N6-C10$ 1.335 (7) 1.502 (7) $N7-C2$ 1.415 (8) 1.444 (7) $N8-C11$ 1.452 (9) 1.429 (7) $N8-C11$ 1.452 (9) 1.429 (7) $N8-C12$ 1.450 (9) 1.434 (8) $C4-C7$ 1.508 (7) 1.489 (9) $C6-C8$ 1.506 (7) 1.502 (8)	· · · · · · · · · · · · · · · · · · ·	N6C10N8 N4C11N8 N5C12N8 Table 3. Hydro, compound (II) V Molecule A N1Cl1 N5Cl3 Molecule B N1Cl1 N5Cl3 Molecule B N1Cl1 N5Cl3 N5Cl3 N5Cl3 N5Cl3 N5Cl3 N5Cl3 N5Cl3 N5Cl3	113.1 (5) 112.8 (5) 112.4 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule $N \cdots Cl$ 3.059 (6) 3.255 (7) 3.194 (6) 3.194 (6) 3.191 (6) 3.160 (6) 3.127 (6) 3.162 (6) 3.155 (7) 3.191 (7) 3.321 (7) $O \cdots Cl$	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 123.2 (4) \\ 123.2 (4) \\ 133.2 (4) \\$	d angles (°) in —H groups or N—HCl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 172 (5) 173 (5) 177 (5) 172 (5) 0—HCl
A B Co1N1 1.972 (5) 1.976 (4)Co1N2 1.975 (4) 1.979 (5)Co1N3 1.976 (5) 1.967 (3)Co1N4 1.986 (5) 1.986 (3)Co1N5 1.965 (5) 1.973 (4)Co1N6 1.973 (4) 1.980 (5)N1C1 1.505 (6) 1.506 (7)N2C2 1.533 (6) 1.503 (7)N2-C5 1.505 (8) 1.485 (7)N3-C6 1.492 (7) 1.486 (7)N4C7 1.502 (8) 1.483 (7)N5-C9 1.478 (7) 1.501 (8)N5-C12 1.528 (6) 1.516 (8)N6C10 1.535 (7) 1.502 (7)N7C1 1.440 (8) 1.422 (7)N8-C10 1.435 (9) 1.441 (7)N7-C2 1.415 (8) 1.444 (7)N8-C11 1.452 (9) 1.429 (7)N8-C12 1.535 (7) 1.502 (7)N7-C3 1.436 (9) 1.442 (7)N8-C10 1.491 (9) 1.448 (7)N8-C11 1.452 (9) 1.429 (7)N8-C12 1.505 (7) 1.492 (8)C5-C9 1.508 (7) 1.489 (9)C5-C9 1.508 (7) 1.489 (9)C6-C8 1.506 (7) 1.502 (8)	· · · · · · · · · · · · · · · · · · ·	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) Molecule A N1Cl1 N6Cl1 N2Cl2 N4Cl2 N3Cl3 Molecule B N1Cl1 N6Cl1 N5Cl3 Molecule B N1Cl1 N5Cl3 Molecule A O1Cl1	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N····Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.180 (6) 3.162 (6) 3.127 (6) 3.155 (7) 3.191 (7) 3.321 (7) O···Cl 3.619 (8)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 173 (5) 157 (5) 172 (5) 0—H···Cl 163 (9)
A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.980 (5) N1-C1 1.505 (6) 1.506 (7) N1-C2 1.533 (6) 1.503 (7) N2-C2 1.533 (6) 1.503 (7) N2-C5 1.505 (8) 1.485 (7) N3-C6 1.492 (7) 1.486 (7) N4-C7 1.502 (8) 1.483 (7) N5-C9 1.478 (7) 1.501 (8) N5-C12 1.528 (6) 1.516 (8) N6-C8 1.504 (9) 1.492 (5) N6-C10 1.535 (7) 1.502 (7) N7-C2 1.415 (8) 1.444 (7) N7-C2 1.415 (8) 1.444 (7) N7-C2 1.436 (9) 1.442 (7) N8-C10 1.401 (9) 1.448 (7) N8-C11 1.452 (9	· ·	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro compound (II) V Molecule A N1···Cl1 N5···Cl2 N4···Cl2 N3···Cl3 Molecule B N1···Cl1 N5···Cl3 Molecule B N1···Cl1 N5···Cl3 N5···Cl3 Molecule A O1···Cl1 O6···Cl3 ⁱ	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule: N···Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.160 (6) 3.160 (6) 3.162 (6) 3.162 (6) 3.155 (7) 3.191 (7) 3.321 (7) O···Cl 3.619 (8) 3.176 (7)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\ 113.5 (4) \\ \\ \text{inces } and N- \\ \text{s O1 } and O2 \\ H- \cdot Cl \\ 1.89 (7) \\ 2.32 (8) \\ 2.23 (6) \\ 1.99 (7) \\ 2.30 (10) \\ 2.39 (6) \\ 2.39 (6) \\ 2.36 (6) \\ 2.64 (4) \\ H- \cdot Cl \\ 2.88 (9) \\ 2.99 (6) \end{array}$	d angles (°) in —H groups or N—HCl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 173 (5) 157 (5) 172 (5) 0—HCl 163 (9) 91 (2)
A B Co1N1 1.972 (5) 1.976 (4) Co1N2 1.975 (4) 1.979 (5) Co1N3 1.976 (5) 1.967 (3) Co1N4 1.986 (5) 1.986 (3) Co1N5 1.965 (5) 1.973 (4) Co1N6 1.973 (4) 1.986 (5) N1C1 1.505 (6) 1.506 (7) N1C4 1.481 (8) 1.491 (6) N2C2 1.533 (6) 1.503 (7) N2C5 1.505 (8) 1.485 (7) N3C6 1.492 (7) 1.486 (7) N4C7 1.502 (8) 1.483 (7) N5-C9 1.478 (7) 1.501 (8) N5C12 1.528 (6) 1.516 (8) N6C10 1.535 (7) 1.502 (7) N7-C1 1.460 (8) 1.425 (7) N7C2 1.415 (8) 1.444 (7) N7C3 1.436 (9) 1.441 (7) N8C10 1.505 (7) 1.492 (8) C4C7 1.505 (7) 1.492 (8) C4C7		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) V Molecule A N1···Cl1 N6···Cl1 N5···Cl2 N3···Cl3 Molecule B N1···Cl1 N6···Cl1 N5···Cl3 Molecule B N1···Cl1 N6···Cl1 N5···Cl3 Molecule A O1···Cl1 O6···Cl3 ⁱ	113.1 (5) 112.8 (5) 112.4 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N····Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.160 (6) 3.271 (6) 3.180 (6) 3.162 (6) 3.155 (7) 3.191 (7) 3.321 (7) O···Cl 3.619 (8) 3.176 (7)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—HCl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 172 (5) 173 (5) 177 (5) 172 (5) 0—HCl 163 (9) 91 (2)
A B Co1-N1 1.972 (5) 1.976 (4)Co1-N2 1.975 (4) 1.979 (5)Co1-N3 1.976 (5) 1.967 (3)Co1-N4 1.986 (5) 1.986 (3)Co1-N5 1.965 (5) 1.973 (4)Co1-N6 1.973 (4) 1.980 (5)N1-C1 1.505 (6) 1.506 (7)N2-C2 1.533 (6) 1.503 (7)N2-C5 1.505 (8) 1.485 (7)N3-C3 1.512 (6) 1.506 (7)N4-C7 1.502 (8) 1.483 (7)N4-C7 1.502 (8) 1.483 (7)N5-C9 1.478 (7) 1.501 (8)N5-C12 1.528 (6) 1.516 (8)N6-C10 1.535 (7) 1.502 (7)N7-C1 1.4460 (8) 1.425 (7)N7-C2 1.415 (8) 1.444 (7)N7-C3 1.436 (9) 1.444 (7)N8-C10 1.401 (9) 1.448 (7)N8-C11 1.452 (9) 1.429 (7)N8-C12 1.505 (7) 1.439 (8)C4-C7 1.505 (7) 1.489 (9)C5-C9 1.508 (7) 1.489 (9)C6-C8 1.506 (7) 1.502 (8)N5-C12 1.505 (7) 1.492 (8)C5-C9 1.508 (7) 1.489 (9)C6-C8 1.506 (7) 1.502 (8)N5-C12 1.505 (7) 1.492 (8)C5-C9 1.508 (7) 1.489 (9)C6-C8 1.506 (7) 1.502 (8)N5-C12 1.506 (7) 1.502 (8)N5-C14-N6 90.6 (2)	· · ·	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) W Molecule A N1···Cl1 N2···Cl2 N3···Cl3 N5···Cl3 Molecule B N1···Cl1 N2···Cl2 N3···Cl3 N5···Cl3 Molecule A O1··Cl1 O6···Cl3 ⁱ Molecule B	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N····Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.180 (6) 3.162 (6) 3.127 (6) 3.155 (7) 3.191 (7) 3.321 (7) O···Cl 3.619 (8) 3.176 (7)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—HCl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 173 (5) 157 (5) 172 (5) 0—HCl 163 (9) 91 (2)
A B $Col-N1$ 1.972 (5) 1.976 (4) $Col-N2$ 1.975 (4) 1.979 (5) $Col-N3$ 1.976 (5) 1.967 (3) $Col-N4$ 1.986 (5) 1.986 (3) $Col-N5$ 1.965 (5) 1.973 (4) $Col-N6$ 1.973 (4) 1.980 (5) $N1-C1$ 1.505 (6) 1.506 (7) $N1-C4$ 1.481 (8) 1.491 (6) $N2-C2$ 1.533 (6) 1.503 (7) $N2-C5$ 1.505 (8) 1.485 (7) $N3-C6$ 1.492 (7) 1.486 (7) $N4-C7$ 1.502 (8) 1.483 (7) $N4-C11$ 1.505 (7) 1.501 (8) $N5-C29$ 1.478 (7) 1.501 (8) $N5-C12$ 1.534 (6) 1.516 (8) $N6-C10$ 1.535 (7) 1.502 (7) $N7-C2$ 1.415 (8) 1.444 (7) $N7-C2$ 1.436 (9) 1.442 (7) $N8-C10$ 1.401 (9) 1.448 (7) $N8-C11$ 1.452 (9) 1.429 (7) $N8-C12$ 1.450 (9) 1.425 (7) $N8-C11$ 1.452 (9) 1.429 (7) $N8-C12$ 1.450 (9) 1.434 (8) $C4-C7$ 1.505 (7) 1.489 (9) $C6-C8$ 1.506 (7) 1.502 (8) $N5-Col-N6$ 90.3 (2) 90.3 (2) $N4-Col-N6$ 90.3 (2) 90.3 (2) $N4-Col-N6$ 90.5 (2) 90.2 (2) $N4-Col-N6$ 90.5 (2) 90.2 (2) $N4-Col-N6$ 90.6 (2) 90.2 (2) $N4-Col-N6$	· · ·	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) V Molecule A N1···Cl1 N5···Cl2 N4···Cl2 N3···Cl3 Molecule B N1···Cl1 N5···Cl3 N5···Cl3 Molecule A O1···Cl1 N5···Cl3 Molecule A O1···Cl1 O6···Cl3 ⁱ Molecule B	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N····Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.180 (6) 3.155 (7) 3.191 (7) 3.321 (7) O····Cl 3.619 (8) 3.176 (7)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—HCl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 172 (5) 172 (5) 172 (5) 0—HCl 163 (9) 91 (2)
A B Co1-N1 1.972 (5) 1.976 (4) Co1-N2 1.975 (4) 1.979 (5) Co1-N3 1.976 (5) 1.967 (3) Co1-N4 1.986 (5) 1.986 (3) Co1-N5 1.965 (5) 1.973 (4) Co1-N6 1.973 (4) 1.980 (5) N1-C1 1.505 (6) 1.506 (7) N1-C2 1.533 (6) 1.503 (7) N2-C2 1.533 (6) 1.503 (7) N2-C5 1.505 (8) 1.485 (7) N3-C6 1.492 (7) 1.486 (7) N4-C1 1.502 (8) 1.483 (7) N4-C1 1.502 (8) 1.483 (7) N5-C9 1.478 (7) 1.501 (8) N5-C12 1.528 (6) 1.516 (8) N6-C8 1.504 (9) 1.492 (5) N6-C10 1.535 (7) 1.502 (7) N7-C2 1.415 (8) 1.444 (7) N7-C3 1.436 (9) 1.442 (7) N7-C3 1.436 (9) 1.442 (7) N8-C11 1.452 (9)		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) V Molecule A N1···Cl1 N6···Cl1 N5···Cl3 Molecule B N1···Cl1 N6···Cl1 N5···Cl3 N5···Cl3 Molecule A O1···Cl1 N5···Cl3 Molecule A O1···Cl1 N5···Cl3 Molecule B O6···Cl3	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N····Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.180 (6) 3.162 (6) 3.155 (7) 3.191 (7) 3.321 (7) O···Cl 3.619 (8) 3.176 (7) 3.241 (8)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 173 (5) 177 (5) 172 (5) 0—H···Cl 163 (9) 91 (2) 171 (8)
A B Co1-N1 1.972 (5) 1.976 (4)Co1-N2 1.975 (4) 1.979 (5)Co1-N3 1.976 (5) 1.967 (3)Co1-N4 1.986 (5) 1.986 (3)Co1-N5 1.965 (5) 1.973 (4)Co1-N6 1.973 (4) 1.980 (5)N1-C1 1.505 (6) 1.506 (7)N1-C4 1.481 (8) 1.491 (6)N2-C2 1.533 (6) 1.503 (7)N3-C3 1.512 (6) 1.506 (7)N3-C6 1.492 (7) 1.486 (7)N4-C7 1.502 (8) 1.483 (7)N4-C11 1.505 (7) 1.503 (7)N5-C9 1.478 (7) 1.501 (8)N5-C12 1.528 (6) 1.516 (8)N6-C10 1.535 (7) 1.502 (7)N7-C1 1.4460 (8) 1.425 (7)N7-C2 1.415 (8) 1.444 (7)N7-C3 1.436 (9) 1.442 (7)N8-C11 1.452 (9) 1.429 (7)N8-C12 1.508 (7) 1.439 (8)C4-C7 1.508 (7) 1.439 (9)C6-C8 1.506 (7) 1.502 (8)N5-C12 1.450 (9) 1.434 (8)C4-C7 1.508 (7) 1.439 (9)C6-C8 1.506 (7) 1.502 (8)N5-C01-N6 90.6 (2) 90.2 (2)N4-Co1-N5 91.5 (2) 91.1 (2)N3-Co1-N6 86.8 (2) 86.0 (2)N3-Co1-N5 91.9 (2) 92.7 (2)N3-Co1-N5 91.9 (2) 92.7 (2)	•	N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) W Molecule A N1Cl1 N6Cl1 N2Cl2 N3Cl3 Molecule B N1Cl1 N5Cl3 Molecule B N1Cl1 N5Cl3 Molecule A O1Cl3 Molecule A O1Cl3 Molecule B O6Cl3 O2Cl3 O2Cl1	113.1 (5) 112.8 (5) 112.4 (5) 112.4 (5) $gen-bond \ distation involving \ Cl a vater molecules N···Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.160 (6) 3.162 (6) 3.162 (6) 3.155 (7) 3.191 (7) 3.321 (7) O···Cl 3.619 (8) 3.176 (7) 3.241 (8) 3.415 (8)$	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\$	d angles (°) in —H groups or N—H···Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 172 (5) 172 (5) 0—H···Cl 163 (9) 91 (2) 171 (8) 162 (10)
A B Co1-N1 1.972 (5) 1.976 (4)Co1-N2 1.975 (4) 1.979 (5)Co1-N3 1.976 (5) 1.967 (3)Co1-N4 1.986 (5) 1.986 (3)Co1-N5 1.965 (5) 1.973 (4)Co1-N6 1.973 (4) 1.986 (5)N1-C1 1.505 (6) 1.506 (7)N1-C4 1.481 (8) 1.491 (6)N2-C2 1.533 (6) 1.503 (7)N3-C3 1.512 (6) 1.519 (7)N3-C6 1.492 (7) 1.486 (7)N4-C7 1.502 (8) 1.483 (7)N4-C11 1.505 (7) 1.503 (7)N5-C9 1.478 (7) 1.501 (8)N5-C12 1.528 (6) 1.516 (8)N6-C10 1.535 (7) 1.502 (7)N7-C2 1.415 (8) 1.444 (7)N7-C1 1.460 (8) 1.425 (7)N7-C2 1.415 (8) 1.444 (7)N7-C3 1.436 (9) 1.441 (7)N8-C11 1.452 (9) 1.429 (7)N8-C12 1.505 (7) 1.492 (8)C5-C9 1.508 (7) 1.489 (9)C6-C8 1.506 (7) 1.502 (8)N5-Co1-N6 90.3 (2) 90.3 (2)N4-Co1-N5 91.5 (2) 91.1 (2)N3-Co1-N5 91.9 (2) 92.7 (2)N3-Co1-N4 175.7 (2) 174.6 (2)		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) Molecule A N1···Cl1 N5···Cl3 Molecule B N1···Cl1 N5···Cl3 Molecule B N1···Cl1 N5···Cl3 N5···Cl3 Molecule A O1···Cl1 N5···Cl3 N5···Cl3 Molecule A O1···Cl1 O6···Cl3 Molecule B O6···Cl3 O2···Cl3	113.1 (5) 112.8 (5) 112.4 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule $N \cdots Cl$ 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.180 (6) 3.127 (6) 3.127 (6) 3.155 (7) 3.191 (7) 3.221 (7) $O \cdots Cl$ 3.619 (8) 3.176 (7) 3.241 (8) 3.415 (8)	$\begin{array}{c} 113.2 (4) \\ 113.4 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 113.5 (4) \\ 123.2 (8) \\ 2.23 (6) \\ 1.99 (7) \\ 2.10 (9) \\ 2.32 (8) \\ 2.23 (6) \\ 1.99 (7) \\ 2.10 (9) \\ 2.32 (8) \\ 2.23 (6) \\ 1.99 (7) \\ 2.30 (10) \\ 2.39 (6) \\ 2.34 (5) \\ 2.26 (5) \\ 2.44 (6) \\ 2.36 (6) \\ 2.64 (4) \\ 11.5 (113.$	d angles (°) in —H groups or N—HCl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 172 (5) 173 (5) 177 (5) 172 (5) 0—HCl 163 (9) 91 (2) 171 (8) 162 (10)
A B Co1-N1 1.972 (5) 1.976 (4)Co1-N2 1.975 (4) 1.979 (5)Co1-N3 1.976 (5) 1.967 (3)Co1-N4 1.986 (5) 1.986 (3)Co1-N5 1.965 (5) 1.973 (4)Co1-N6 1.973 (4) 1.980 (5)N1-C1 1.505 (6) 1.506 (7)N1-C2 1.533 (6) 1.503 (7)N2-C2 1.533 (6) 1.503 (7)N3-C3 1.512 (6) 1.519 (7)N3-C6 1.492 (7) 1.486 (7)N4-C7 1.502 (8) 1.483 (7)N4-C7 1.502 (8) 1.483 (7)N5-C9 1.478 (7) 1.501 (8)N5-C12 1.528 (6) 1.516 (8)N6-C8 1.504 (9) 1.492 (5)N6-C10 1.535 (7) 1.502 (7)N7-C1 1.4460 (8) 1.425 (7)N7-C2 1.415 (8) 1.444 (7)N7-C3 1.436 (9) 1.442 (7)N8-C10 1.401 (9) 1.448 (7)N8-C11 1.452 (9) 1.429 (7)N8-C12 1.505 (7) 1.492 (8)C5-C9 1.508 (7)<		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) Molecule A N1 \cdots Cl1 N6 \cdots Cl1 N2 \cdots Cl2 N4 \cdots Cl2 N3 \cdots Cl3 Molecule B N1 \cdots Cl1 N5 \cdots Cl3 Molecule B N1 \cdots Cl1 N5 \cdots Cl3 N5 \cdots Cl3 Molecule A O1 \cdots Cl1 N5 \cdots Cl3 N5 \cdots Cl3	113.1 (5) 112.8 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule N····Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.180 (6) 3.162 (6) 3.127 (6) 3.155 (7) 3.191 (7) 3.321 (7) O···Cl 3.619 (8) 3.176 (7) 3.241 (8) 3.415 (8) Symmetry code: (i	113.2 (4) 113.4 (4) 113.5 (4)	d angles (°) in -H groups or N-H \cdots Cl 170 (6) 142 (6) 169 (5) 165 (5) 173 (5) 177 (5) 177 (5) 177 (5) 177 (5) 172 (5) O-H \cdots Cl 163 (9) 91 (2) 171 (8) 162 (10)
A B $Col-N1$ 1.972 (5) 1.976 (4) $Col-N2$ 1.975 (4) 1.979 (5) $Col-N3$ 1.976 (5) 1.967 (3) $Col-N4$ 1.986 (5) 1.986 (3) $Col-N5$ 1.965 (5) 1.973 (4) $Col-N6$ 1.973 (4) 1.980 (5) $N1-C1$ 1.505 (6) 1.506 (7) $N1-C4$ 1.481 (8) 1.491 (6) $N2-C2$ 1.533 (6) 1.503 (7) $N2-C5$ 1.505 (8) 1.485 (7) $N3-C6$ 1.492 (7) 1.486 (7) $N4-C7$ 1.502 (8) 1.483 (7) $N4-C11$ 1.505 (7) 1.503 (7) $N5-C9$ 1.478 (7) 1.501 (8) $N5-C12$ 1.538 (6) 1.516 (8) $N6-C10$ 1.535 (7) 1.502 (7) $N7-C2$ 1.415 (8) 1.444 (7) $N7-C2$ 1.415 (8) 1.444 (7) $N7-C2$ 1.436 (9) 1.442 (7) $N8-C11$ 1.452 (9) 1.434 (8) $C4-C7$ 1.505 (7) 1.492 (8) $C5-C9$ 1.508 (7) 1.489 (9) $C6-C8$ 1.506 (7) 1.502 (8) $N5-Co1-N6$ 90.3 (2) 90.3 (2) $N4-Co1-N5$ 91.5 (2) 91.42 $N3-Co1-N6$ 90.3 (2) 90.3 (2) $N4-Co1-N5$ 91.5 (2) 1.142 $N3-Co1-N5$ 91.9 (2) 92.7 (2) $N3-Co1-N6$ 75.6 (2) 174.8 (2) $N2-Co1-N6$ 175.6 (2) 174.8 (2)		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) Molecule A N1Cl1 N6Cl1 N2Cl2 N4Cl2 N3Cl3 Molecule B N1Cl1 N5Cl3 Molecule B N1Cl1 N2Cl2 N4Cl2 N3Cl3 Molecule A O1Cl1 N5Cl3 Molecule A O1Cl1 O6Cl3 Molecule B O6Cl3 O2Cl1	113.1 (5) 112.8 (5) 112.4 (5) 112.4 (5) gen-bond dista involving Cl a vater molecule $N \cdots Cl$ 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.180 (6) 3.155 (7) 3.191 (7) 3.321 (7) $O \cdots Cl$ 3.619 (8) 3.176 (7) 3.241 (8) 3.415 (8) Symmetry code: (ii	113.2 (4) 113.4 (4) 113.5 (4)	d angles (°) in -H groups or N-H \cdots Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 172 (5) 172 (5) 172 (5) 0-H \cdots Cl 163 (9) 91 (2) 171 (8) 162 (10)
A B $Col - N1$ 1.972 (5) 1.976 (4) $Col - N2$ 1.975 (4) 1.979 (5) $Col - N3$ 1.976 (5) 1.967 (3) $Col - N4$ 1.986 (5) 1.986 (3) $Col - N5$ 1.965 (5) 1.973 (4) $Col - N6$ 1.973 (4) 1.980 (5) $N1 - C1$ 1.505 (6) 1.506 (7) $N1 - C4$ 1.481 (8) 1.491 (6) $N2 - C2$ 1.533 (6) 1.503 (7) $N3 - C3$ 1.512 (6) 1.519 (7) $N3 - C6$ 1.492 (7) 1.486 (7) $N4 - C7$ 1.502 (8) 1.483 (7) $N5 - C9$ 1.478 (7) 1.501 (8) $N5 - C12$ 1.528 (6) 1.516 (8) $N6 - C8$ 1.504 (9) 1.492 (5) $N6 - C10$ 1.535 (7) 1.502 (7) $N7 - C1$ 1.460 (8) 1.425 (7) $N7 - C2$ 1.415 (8) 1.444 (7) $N7 - C3$ 1.436 (9) 1.441 (7) $N8 - C11$ 1.452 (9) 1.429 (7) $N8 - C12$ 1.505 (7) 1.492 (8) $C4 - C7$ 1.505 (7) 1.492 (8) $C5 - C9$ 1.508 (7) 1.489 (9) $C6 - C8$ 1.506 (7) 1.502 (8) $N5 - Col - N6$ 90.3 (2) 90.3 (2) $N4 - Col - N6$ 90.6 (2) 90.2 (2) $N4 - Col - N6$ 90.6 (2) 90.2 (2) $N4 - Col - N6$ 91.5 (2) 71.48 (2) $N3 - Col - N6$ 91.5 (2) 71.48 (2) $N3 - Col - N6$ <		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) V Molecule A N1···Cl1 N6···Cl2 N3···Cl3 Molecule B N1···Cl1 N6···Cl3 Molecule A N1···Cl1 N6···Cl3 Molecule A O1···Cl1 N5···Cl3 Molecule A O1···Cl1 N6···Cl3 Molecule A O1···Cl1 O6···Cl3 ⁱ Molecule B O6···Cl3 Molecule B O2···Cl1 S The poorly solu	113.1 (5) 112.8 (5) 112.4 (5) 3.059 (6) 3.255 (7) 3.194 (6) 3.150 (6) 3.271 (6) 3.160 (6) 3.160 (6) 3.162 (6) 3.162 (6) 3.155 (7) 3.191 (7) 3.221 (7) 0Cl 3.619 (8) 3.176 (7) 3.241 (8) 3.176 (8) Symmetry code: (i) ble complex (I)	113.2 (4) 113.4 (4) 113.5 (4)	d angles (°) in -H groups or N-H \cdots Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 172 (5) 0-H \cdots Cl 163 (9) 91 (2) 171 (8) 162 (10) ated by adding
A B Co1-N1 1.972 (5) 1.976 (4)Co1-N2 1.975 (4) 1.979 (5)Co1-N3 1.976 (5) 1.967 (3)Co1-N4 1.986 (5) 1.986 (3)Co1-N5 1.965 (5) 1.973 (4)Co1-N6 1.973 (4) 1.980 (5)N1-C1 1.505 (6) 1.506 (7)N1-C4 1.481 (8) 1.491 (6)N2-C2 1.533 (6) 1.503 (7)N3-C3 1.512 (6) 1.519 (7)N3-C6 1.492 (7) 1.486 (7)N4-C7 1.502 (8) 1.483 (7)N4-C7 1.502 (8) 1.483 (7)N5-C9 1.478 (7) 1.501 (8)N5-C12 1.528 (6) 1.516 (8)N6-C10 1.535 (7) 1.502 (7)N7-C1 1.4460 (8) 1.425 (7)N7-C2 1.415 (8) 1.444 (7)N7-C3 1.436 (9) 1.444 (7)N8-C10 1.401 (9) 1.448 (7)N8-C11 1.452 (9) 1.429 (7)N8-C12 1.505 (7) 1.439 (8)C5-C9 1.508 (7) 1.489 (9)C6-C8 1.506 (7) 1.502 (8)N5-C01-N6 90.6 (2) 90.2 (2)N4-Co1-N5 91.5 (2) 91.1 (2)N3-Co1-N4 175.7 (2) 174.6 (2)N3-Co1-N4 175.7 (2) 174.6 (2)N3-Co1-N4 92.4 (2) 93.8 (2)N3-Co1-N5 91.9 (2) 92.7 (2)		N6-C10-N8 N4-C11-N8 N5-C12-N8 Table 3. Hydro, compound (II) W Molecule A N1···Cl1 N6···Cl1 N2···Cl2 N3···Cl3 Molecule B N1···Cl1 N6···Cl3 Molecule B N1···Cl1 N6···Cl3 Molecule A O1···Cl1 N5···Cl3 Molecule A O1···Cl1 O6···Cl3 O2···Cl3 Molecule B O6···Cl3 O2···Cl1 S The poorly solu	113.1 (5) 112.8 (5) 112.4 (5) 112.4 (5) gen-bond distance involving Cl ava vater molecule N···Cl 3.059 (6) 3.255 (7) 3.194 (6) 3.111 (6) 3.111 (6) 3.160 (6) 3.271 (6) 3.160 (6) 3.127 (6) 3.127 (6) 3.155 (7) 3.191 (7) 3.321 (7) O···Cl 3.619 (8) 3.176 (7) 3.241 (8) 3.415 (8) Symmetry code: (i) ble complex (I)	113.2 (4) 113.4 (4) 113.5 (4)	d angles (°) in -H groups or N-H \cdots Cl 170 (6) 142 (6) 169 (5) 160 (5) 155 (6) 163 (7) 170 (5) 165 (5) 172 (5) 172 (5) 0-H \cdots Cl 163 (9) 91 (2) 171 (8) 162 (10) atted by adding

The poorly soluble complex (I) was precipitated by adding $Na_2S_2O_3$ and $NaClO_4$ (Rampi Scandola, Scandola & Indelli,

1985) to a solution obtained by treating Co(en)₃Cl₃ with CH₂O and NH₃ (Creaser *et al.*, 1982). The data for the cell determination revealed no evidence of twinning. The data were corrected for Lorentz and polarization effects. All non-H atoms were located through Patterson and Fourier techniques. Three H atoms were located by successive least-squares refinements associated with ΔF calculations and the remaining two, H11 and H12, were introduced in idealized positions. An empirical correction for absorption effects was applied (*ABSORB*; Ugozzoli, 1987, following Walker & Stuart, 1983) after the last isotropic refinement ($T_{min} = 0.8998$, $T_{max} = 1.1708$). Anisotropic thermal parameters were refined for all non-H atoms; H atoms were refined isotropically and held in fixed positions during the last cycles of refinement. Refinements performed with independent data collected using two further different crystals gave comparable results.

Complex (II) was prepared by treating (I) with concentrated HCl and an excess of NaNO₃; the resulting Co(sep)(NO₃)₃ was dissolved and then eluted on an anionic Cl⁻ resin giving a solution from which crystals separated after slow evaporation. An empirical absorption correction was performed using three standard reflections. The data were corrected for Lorentz and polarization effects. Patterson interactions revealed the presence of two independent Co atoms; successive least-squares refinements and ΔF calculations enabled the remaining non-H and H atoms to be located. An empirical absorption correction (Walker & Stuart, 1983; Ugozzoli, 1987) was applied after the last isotropic refinement ($T_{min} = 0.8986$, $T_{max} = 1.0654$). Thermal parameters were refined anisotropically for non-H atoms and isotropically for H atoms; the H atoms were held fixed during the final least-squares cycles.

SHELX86 (Sheldrick, 1986) and SHELX76 (Sheldrick, 1976) were used for structure solution and refinement and PARST (Nardelli, 1983) for geometric calculations. ORTEP (Johnson, 1965) and PLUTO (Motherwell & Clegg, 1976) were used to produce the drawings. Extensive use was made of the Cambridge Structural Database (Allen, Kennard & Taylor, 1983). Calculations were performed on ENCORE-GOULD-POWERNODE 6040 and ENCORE 91 computers of the Centro di Studio per la Strutturistica Diffrattometrica del CNR (Parma).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55841 (40 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AL1026]

References

Abrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157-165.

- Allen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.
- Creaser, I. I., Geue, R. J., Harrowfield, J. MacB., Herlt, A. J., Sargeson, A. M., Snow, M. R. & Springborg, J. (1982). J. Am. Chem. Soc. 104, 6016–6025.
- Creaser, I. I., Harrowfield, J. MacB., Herlt, A. J., Sargeson, A. M., Springborg, J., Geue, R. J. & Snow, M. R. (1977). J. Am. Chem. Soc. 99, 3181-3182.
- Gilli, G. (1977). ABRAHAMS. Program for calculating half-normal probability plots. Univ. di Ferrara, Italy.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.

- Mikami, M., Konno, M. & Saito, Y. (1979). Acta Cryst. B35, 3096– 3098.
- Motherwell, W. D. S. & Clegg, W. (1976). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England. Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- North, A. C. T., Phillips, D. C. & Matthews, F. S. (1968). Acta Cryst. A24, 351-359.
- Paik Suh, M., Shin, W., Kim, D. & Kim, S. (1984). Inorg. Chem. 23, 618-620.
- Rampi Scandola, M. A., Scandola, F. & Indelli, A. (1985). J. Chem. Soc. Faraday Trans. 1, 81, 2967-2974.
- Sargeson, A. M. (1979). Chem. Ber. 15, 23.
- Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1986). SHELX86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1992). SHELXL92. Program for structure refinement. Univ. of Göttingen, Germany.
- Ugozzoli, F. (1987). Comput. Chem. 11, 109-120.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 1169-1171

Structure of Di-µ-chlorobis[bis(triphenylphosphine)palladium(II)] Bis(tetrafluoroborate) Acetone Solvate Dihydrate

S. GANGULY, E. M. GEORGIEV, J. T. MAGUE AND D. M. ROUNDHILL

Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA

(Received 24 July 1992; accepted 10 November 1992)

Abstract

The structure consists of a palladium dimer with bridging Cl atoms, two tetrafluoroborate anions and two water molecules and one acetone molecule. Each Pd atom in the dimer is surrounded by two Cl and two P atoms, forming a slightly distorted *cis* square-planar configuration.

Comment

Recently we have been using bridged dimers of Pd^{II} as catalysts in homogeneously catalyzed alkene hydration reactions (Ganguly & Roundhill, 1991). During the course of this research we became interested in certain structural features of these bridged dimers such as their intermetallic distances and their dihedral angles between the coordination planes of the Pd centers. Since there have been relatively few structural studies of chloro-bridged dimers of Pd^{II}, we have solved the structure of the title compound.

© 1993 International Union of Crystallography